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LE’ITER TO THE EDITOR 

A memory which forgets 

Giorgio Parisi 
Dipartimento di Fisica, I1 Universita di Roma ‘Tor Vergata’, Via Orazio Raimondo, Roma 
00173, Italy and INFN, sezione di Roma, Italy 

Received 7 March 1986 

Abstract. The model of Hopfield for a neural network with associative memory is modified 
by the introduction of a maximum value for the synaptic strength; in this way old patterns 
are automatically forgotten and the memory recalls only the most recent ones. If the 
parameters are correctly chosen, the memory never goes into the state of total confusion 
characteristic of the Hopfield model. 

In recent years the mechanism for which neural networks behave as associative 
memories (more precisely as content-addressable memories) has been extensively 
studied. It seems that considerable progress in this field was made by the introduction 
of very stylised models which are far from realistic; the advantage of these models is 
the possibility of performing simple computer simulations and of doing analytic studies; 
in this way we hope to clarify the basic issues of the theory of networks with associative 
memory. 

A very interesting model has been proposed by Hopfield [l] :  each neuron may 
stay in two states, firing or quiescent (the ith neuron is represented by a spin variable 
ai which may take the values *l);  the synaptic strength is assumed to be symmetric, 
i.e. the influence (&) of the ith neuron on the kth neuron is the same when i and k 
are exchanged (J i ,k  = Jk,) ,  and the input patterns are stored using the generalised Hebb 
rule for modifying the synaptic strength. An ‘energy’ function E [ a ]  can be associated 
with each configuration {a}  of the network and the time evolution of the neural network 
is such that the asymptotic stable states at large times are the minima of E [ a ]  with 
respect to {a}. 

For simplicity let us say that the network remembers a given input pattern {a}  if 
the asymptotic state is {a} or very near to {a}  when the initial state of the network is 
equal to {a}  (different and more restrictive definitions can be used); in other words 
E [ a ]  must have a minimum near each of the input patterns which are remembered. 

The Hopfield model is also very interesting because it has many points in common 
with spin glasses and a very sophisticated and rich theory has been recently constructed 
for spin glasses [2]. 

Under the strong assumption that the input patterns are uncorrelated, both numeri- 
cal simulation [l ,  31 and analytic computations [4] show that the storage capacity of 
such a network is proportional to N. If the number M of input patterns becomes 
larger than a critical value M,  (MCcc0.l4N) the network goes into a state of total 
confusion and a negligible amount of patterns are remembered; in contrast, if M is 
smaller than M,, practically all input patterns are remembered. 
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Any memory which has been well designed should not go into a state of total 
confusion when overloaded: the most welcome reaction should be that old inputs are 
forgotten in order to leave room for new inputs. It has recently been suggested that 
the state of total confusion may be avoided if the variation in the synaptic strength 
induced by the storing of the Mth pattern increases with M as exp(aM) [ 5 ] :  the 
synaptic strengths essentially depend only on the last input patterns and the old patterns 
are automatically forgotten; by choosing an appropriate value of a the state of total 
confusion is avoided and the memory still keeps the capability of storing a number of 
patterns proportional to N. 

This mechanism is very promising; however it is certainly interesting to explore 
other possibilities. In this letter I would like to suggest another mechanism which 
allows old patterns to be forgotten. The idea is very simple: while in the original 
Hopfield model the synaptic strength could take arbitrarily large (positive or negative) 
values, here I propose (less unrealistically) that the synaptic strength is bounded, i.e. 

lJi,kl < A. (1) 

The generalised Hebb rule still holds with the exception that if a modification of 
the synaptic strength J ; , k  should violate the bound (l) ,  this modification is not operative. 
In this way, when we store a given pattern, the non-linear constraint (1) is such that 
the information about old patterns gradually deteriorates and is finally lost at the end. 
By choosing the value of A with care we can avoid the state of total confusion and 
still keep a storing capability proportional to N. 

Let us examine the details of the model before showing the computer simulations. 
The energy function is (as usual) 

The new synaptic strengths (J;Ew) after having stored a pattern { p }  (the p i  also 
may have only the values +1) are given by 

J;iw =f(J$ f Cpjpk)  (3) 

where &'Ld is the old value of the synaptic strength, C is a normalisation constant 
(which for convention we take equal to N-'I2)  andf(x)  is a function which characterises 
the model. If 

f ( x ) = x  (4) 

(3) is the generalised Hebb rule. The model proposed in this letter corresponds to the 
choice 

f ( x ) = - A  f o r x < - A  

f ( X I  = x for -A< x < A ( 5 )  

f ( x )  = A  for A < x. 

It is clear that any other non-linear function f ( x )  with saturation would suffice. 
Equation ( 5 )  is retained for its simplicity. 

We know that in the Hopfield model ( A  + a) the state of total confusion is reached 
after M = a N  independent patterns have been stored, with a = 0.14; the distribution 
of a given synaptic strength Ji,k is a Gaussian with variance CY'". In order to avoid 
the state of total confusion the value of A should be such that the distribution of the 
J is seriously modified for (Y = 0.14, so A cannot be much larger than (0.14)''2 = 0.4. 
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In order to test the validity of this model I have performed numerical simulations 
at different values of N ( N  = 100, 200 and 400) and A (for a total amount of about 
100 h of CPU on a VAX 750). A large number of independent patterns (greater than 
N )  have been stored and I have investigated the number of patterns which are 
remembered by the memory (by definition the pattern is remembered if no more than 
2% of the neurons in the final configuration differ from the stored pattern; other 
reasonable definitions lead to quite similar results). 

For A greater than a critical value ( A  = 0.7) practically no patterns are remembered 
while for smaller values of A the last patterns are well memorised. In figure 1 we plot 
some estimates of the storage capability of the memory (i.e. the average number of 
stored patterns which are remembered) as a function of A: this quantity has a maximum 
at an intermediate value of A (~0.35). The existence of a maximum is not surprising: 
in the limit A + 0 only the information concerning the very last patterns is not deterior- 
ated and for large values of A we stay in the state of total confusion. It is also apparent 
that the storage capacity is proportional to N at fixed A: the maximum (at A = 0.35) 
is about 0.05 N. 
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Figure 1. The storage capability as a function of A for N = 100 (x), N = 200 ( n ) and 
N = 400 ( a ) .  

In figure 2 I show the probability of remembering the ( M  - k)th pattern after M 
patterns have been stored for A = 0.35 as a function of x = k/ N. It is evident that only 
the most recent states are remembered with high probability and that such a probability 
decreases with x; it seems also that this retrieval probability has a finite limit when 
N + 00 at fixed x. For N in the range 200-400, only if x is smaller than 20.04N are we 
confident that the input patterns have been memorised (i.e. the retrieval probability is 
higher than 90%). In the range of N studied in this letter, about 70% of the total 
storage capacity is in this safe region (x < 0.04N): more detailed investigations are 
needed to establish if in the limit N + a all the storage capacity moves into the safe 
region and the curve plotted in figure 2 becomes a theta function (i.e. 1 for x < x, and 
0 for x > x,). 

The conclusion is that the introduction of bounds on the synaptic strengths and 
consequently of non-linearities in the generalised Hebb rule may modify the memory 
model of Hopfield in such a way that the state of total confusion is avoided and the 
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Figure 2. The retrieval probability of a given pattern as a function of x = k / N  (for N = 100 
(x), N = 200 ( n ) and N = 400 ( a )  at A = 0.35) after k patterns have been subsequently 
stored in the network (i.e. the retrieval probability of the j th  pattern after j +  k patterns 
are stored). 

memory remembers only the last inputs (with very high probability). The safe storage 
capability of such a neural network is obviously smaller than the original model and 
it is about 0.04N. 

It is a pleasure for me to thank M Virasoro and M Mezard for many long discussions 
on memory organisation and neural networks. I am grateful to G Toulouse for having 
communicated the results of [ 5 ]  prior to publication and for a discussion on the model 
presented in this letter. 
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